Stability Analysis of the Explicit Difference Scheme for Richards Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Explicit Finite Difference Scheme for the Camassa-holm Equation

We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H1 initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H1 towards a dissipative weak solution of C...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Qualitative Mathematical Analysis of the Richards Equation

The Richards equation is widely used as a model for the flow of water in unsaturated soils. For modelling one-dimensional flow in a homogeneous soil, this equation can be cast in the form of a specific nonlinear partial differential equation with a time derivative and one spatial derivative. This paper is a survey of recent progress in the pure mathematical analysis of this last equation. The e...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Comparison of Dynamic Diffusion with an Explicit Difference Scheme for the Schrödinger Equation

We represent the method of dynamic diffusion for the approximate solution of Schrödinger’s equation with decoherence and describe a swarm simulation as a proof of concept. Decoherence occurs as the divergence of the exact solution for the dynamics of the diffusion swarm, which arises when the total number of real particles grows. The method of dynamic diffusion cannot be reduced to the solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2020

ISSN: 1099-4300

DOI: 10.3390/e22030352